Scalable real-time OLAP on cloud architectures

نویسندگان

  • Frank Dehne
  • Q. Kong
  • Andrew Rau-Chaplin
  • Hamidreza Zaboli
  • R. Zhou
چکیده

In contrast to queries for on-line transaction processing (OLTP) systems that typically access only a small portion of a database, OLAP queries may need to aggregate large portions of a database which often leads to performance issues. In this paper we introduce CR-OLAP, a scalable Cloud based Real-time OLAP system based on a new distributed index structure for OLAP, the distributed PDCR tree. CR-OLAP utilizes a scalable cloud infrastructure consisting of multiple commodity servers (processors). That is, with increasing database size, CR-OLAP dynamically increases the number of processors to maintain performance. Our distributed PDCR tree data structure supports multiple dimension hierarchies and efficient query processing on the elaborate dimension hierarchies which are so central to OLAP systems. It is particularly efficient for complex OLAP queries that need to aggregate large portions of the data warehouse, such as “report the total sales in all stores located in California and New York during the months February-May of all years”. We evaluated CR-OLAP on the Amazon EC2 cloud, using the TPC-DS benchmark data set. The tests demonstrate that CR-OLAP scales well with increasing number of processors, even for complex queries. For example, for an Amazon EC2 cloud instance with 16 processors, a data warehouse with 160 million tuples, and a TPC-DS OLAP query stream where each query aggregates between 60% and 95% of the database, CR-OLAP achieved a query latency of below 0.3 seconds which can be considered a real time response.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ES2: A cloud data storage system for supporting both OLTP and OLAP

Cloud computing represents a paradigm shift driven by the increasing demand of Web based applications for elastic, scalable and efficient system architectures that can efficiently support their ever-growing data volume and large-scale data analysis. A typical data management system has to deal with real-time updates by individual users, and as well as periodical large scale analytical processin...

متن کامل

ES: A Cloud Data Storage System for Supporting Both OLTP and OLAP

Cloud computing represents a paradigm shift driven by the increasing demand of Web based applications for elastic, scalable and efficient system architectures that can efficiently support their ever-growing data volume and large-scale data analysis. A typical data management system has to deal with real-time updates by individual users, and as well as periodical large scale analytical processin...

متن کامل

A Mobile and Fog-based Computing Method to Execute Smart Device Applications in a Secure Environment

With the rapid growth of smart device and Internet of things applications, the volume of communication and data in networks have increased. Due to the network lag and massive demands, centralized and traditional cloud computing architecture are not accountable to the high users' demands and not proper for execution of delay-sensitive and real time applications. To resolve these challenges, we p...

متن کامل

Query Processing on OLAP System with Cloud Computing Environment

The conventional researches on a distributed On-Line Analytical Processing (OLAP) system have been in hardship to be adapted to real business environment. However, the recent spread of Cloud PaaS (Platform as a Services) provides new chances in the field of a distributed OLAP. OLAP query execution costs many minutes by its enormous data and OLAP query properties. On the other hand, MOLAP has fa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Parallel Distrib. Comput.

دوره 79-80  شماره 

صفحات  -

تاریخ انتشار 2015